OF THE AMERICAN CHEMICAL SOCIETY
 (c) Copyright 1982 by the American Chemical Society

Volume 104, Number 5
March 10, 1982

An ab Initio Molecular Orbital Study of the Rearrangement of α-Disulfoxide to Thiosulfonate

Fillmore Freeman, * Christos N. Angeletakis, William J. Pietro, and Warren J. Hehre*
Contribution from the Department of Chemistry, University of California, Irvine, California 92717. Received June 29, 1981

Abstract

The structures of hydrogen persulfide ($\mathrm{HSSH}, 18$) and its monoxide ($\mathrm{HS}(\mathrm{O}) \mathrm{SH}, \mathbf{3}$), dioxides $\left(\mathrm{HSO}_{2} \mathrm{SH}, \mathbf{1}\right.$, $\mathrm{HS}(\mathrm{O}) \mathrm{S}(\mathrm{O}) \mathrm{H}, 2$), and tetraoxide ($\mathrm{HSO}_{2} \mathrm{SO}_{2} \mathrm{H}, 17$) derivatives were examined by ab initio molecular orbital calculations at the HF/3-21G* and $6-31 \mathrm{G}^{*}$ levels. The energetics of the rearrangement of α-disulfoxides (2) to thiosulfonates (1) via sulfenyl sulfinate (HS(O)OSH, 11), sulfinyl radical, thiyl radical, and/or sulfonyl radical were investigated. The calculated relative energies agree with proposed mechanisms and experimental results.

The possible structures of disulfide dioxides have generated considerable controversy, the question being whether they have the thiosulfonate structure 1 or the isomeric α-disulfoxide structure

1
2. Infrared and Raman spectra ${ }^{1}$ and X-ray diffraction data ${ }^{2}$ indicate that $\mathbf{1}$ is the preferred structure for thiosulfonates.

Thiosulfinates (3) are oxidized by peroxy acids to thiosulfonates

(1). Although the mechanism of oxidation has not been fully elucidated, it appears to vary with the structure of the thiosulfinate. ${ }^{3-10}$ Oxidation of unsymmetrical thiosulfinates (4) such as 4 -fluorophenyl benzenethiosulfinate ${ }^{8}$ and methyl benzene-

[^0]thiosulfinate ${ }^{9,10}$ led to the formation of four different thiosulfonates, respectively (eq 2). These products, kinetic studies, ${ }^{719} \mathrm{~F}$ NMR

experiments, ${ }^{8}$ and ${ }^{18} \mathrm{O}$ labeling experiments ${ }^{9,10}$ are consistent with an α-disulfoxide intermediate $(2,8)$ and show that the S - S bond has undergone cleavage during the course of the reaction.

Homolytic scission of the S-S bond in $\mathbf{8}$ leads to sulfinyl radicals

10
9 and 10. A head to tail recombination of radicals 9 and 10 can lead to four different sulfenyl sulfinates (11-14), ${ }^{11}$ which can rearrange to thiosulfonates $1,5,6$, and 7 respectively, via sulfonyl ($15, \mathrm{RS} \dot{\mathrm{O}}_{2}$) and thiyl (16, R $\left.\dot{\mathrm{S}}\right)$ radicals. ${ }^{12}$
(11) Howard, J. A.; Furimsky, E. Can. J. Chem. 1974, 52, 555.
(12) Gilbert, B. C.; Gill, B.; Ramsden, M. J. Chem. Ind. (London) 1979, 283.

Table I. A Comparison of Observed and Calculated Bond Angles (Deg) and Bond Lengths (\AA) in Thiosulfinates 3^{a} and 19^{25}

	thiosulfinate		
bond or length	0	0	
$\mathrm{H}_{1}-\mathrm{S}_{1}-\mathrm{S}_{2}^{-\mathrm{H}_{2}}$	$0 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{S}-\mathrm{S}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-\rho$		
$\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	1	19	
$\angle \mathrm{OS}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	87.9	93.1	
$\angle \mathrm{OS}_{1} \mathrm{~S}_{2}$	109.1	108.3	
$\mathrm{~S}_{2}-\mathrm{H}_{2}(\mathrm{C})$	113.5	111.3	
$\mathrm{~S}_{1}-\mathrm{H}_{1}(\mathrm{C})$	1.326	1.771	
$\mathrm{~S}_{1}-\mathrm{O}^{2}$	1.335	1.782	
$\mathrm{~S}_{1}-\mathrm{S}_{2}$	1.473	1.457	

${ }^{a}$ Calculated values.
Table II. A Comparison of Observed and Calculated Bond Angles (Deg) and Bond Lengths in Thiosulfonates $1^{a, b}$ and 20^{2}

The purpose of this investigation is to examine the following points by means of a initio molecular orbital calculations: (1) the structures of α-disulfoxides (2) and sulfenyl sulfinates (11, 12); (2) the relative energies of α-disulfoxides (2), sulfenyl sulfinates (11, 12) and thiosulfonates (1); and (3) the relative stabilities of sulfinyl $(9,10)$, sulfonyl (15), and thiyl (16) radicals. The simplest homologues, where $R=R_{1}=H$, were chosen for this study for ease of computation and in order to exclude substituent effects.

Theoretical Methods

The equilibrium structures of all molecules and radicals considered in this study were fully optimized at the HF/3-21G* level. ${ }^{20-23}$ Single point calculations utilizing the more extensive $6-31 G^{*}$ basis set were performed by using these structures. Both theoretical methods have been shown to be relatively successful in reproducing known geometries and relative stabilities of a variety of normal and hypervalent molecules incorporating second-row elements. ${ }^{20.21}$ All calculations were carried out with the Gaussian 77 program system ${ }^{24}$ on a Harris Slash 6 computer.
(20) Pietro, W. J.; Francl, M. M.; Hehre, W. J.; DeFrees, D. J.; Pople, J.
(13) Kice, J. L., In "Free Radicals"; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. II, Chapter 24.
(14) Topping, R. M.; Kharasch, N. J. Org. Chem. 1962, 27, 4353.
(15) da Silva Correa, C. M. M.; Waters, W. A. J. Chem. Soc. C 1968, 1874.
(16) Chatgiliaboglu, C.; Gilbert, B. C.; Kirk, C. M.; Norman, B. O. C. J. Chem. Soc., Perkin Trans. 2 1979, 1084.
(17) Benson, S. W. Chem. Rev. 1978, 78, 23.
(18) Barnard, D.; Percy, E. J. Chem. Ind. (London) 1960, 1332.
(19) Disulfide (18) was observed during the peroxydation of an aryl thiosulfinate. ${ }^{18}$ However, other workers ${ }^{7,8}$ have attributed the formation of disulfide (18) to the decomposition of the thiosulfinate (3).

Z(RS,SR diastereomer)

2 (FR.SS diastereomer)

3

2 (RR.SS diastereomer)

3

$d t$

2.5

It

d6

22

18

Figure 1. Calculated equilibrium geometries of hydrogen persulfide (18), its oxide derivatives, and related species.

Table III. A Comparison of Observed and Calculated Bond Angles (Deg) and Bond Lengths (\AA) in α-Disulfones 17^{a} and 21^{26}

bond angle or length	α-disulfone	
	17	21
$\mathrm{S}_{1} \mathrm{~S}_{1} \mathrm{O}_{1}$	106.5	$105.5(0.1)^{b}$
$\mathrm{S}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}$	106.5	105.9 (0.1)
$\mathrm{S}_{1} \mathrm{~S}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	97.8	101.5 (0.1)
$\mathrm{O}_{1} \mathrm{~S}_{1} \mathrm{O}_{1}$		120.3 (0.1)
$\mathrm{O}_{1} \mathrm{~S}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	110.2	111.5 (0.1)
$\mathrm{O}_{2} \mathrm{~S}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	110.2	118.0 (0.1)
$\mathrm{S}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	1.327	1.753 (0.001)
$\mathrm{S}_{1} \mathrm{O}_{1}$	1.426	1.428 (0.001)
$\mathrm{S}_{1} \mathrm{O}_{2}$	1.426	1.428 (0.001)
$S_{1} S_{2}$	2.072	2.193 (0.001)

${ }^{a}$ Calculated values. ${ }^{b}$ Standard deviations in parentheses.

Results and Discussion

The calculated equilibrium geometries of hydrogen homologues ($\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$) $1-3,9,11$, and $15-18$ are shown in Figure 1. Structures 1-3, 11, and 17 were calculated by using the anti conformation initially. No energy minimum could be found for 1 with the hydrogens anti to each other and for 15 with the
hydrogen bonded to sulfonyl sulfur. Indeed, the hydrogen is bonded to oxygen when 1 is optimized in the anti conformation.

Table I shows a comparison of the calculated bond angles and bond lengths of $3(\mathrm{R}=\mathrm{H})$ with the observed values of p-tolyl p-toluenesulfinate (19). ${ }^{25}$

Table II shows a comparison of the calculated bond angles and bond lengths of $1(\mathrm{R}=\mathrm{H})$ with the observed values of p -
(25) Kiers, C. Th.; Vos, A. Recl. Trav. Chim. Pays-Bas 1978, 97, 166.

Table IV. A Comparison of Calculated and Observed Bond Angles (Deg) and Bonds Lengths (A) of Hydrogen Persulfide (H-S-S-H, 18) and Its Corresponding Oxide Derivatives ${ }^{a}$

sulfur compd	structure no.	$\angle \mathrm{O}_{1} \mathrm{~S}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	LOSS	$\angle \mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{H}_{1}\left(\mathrm{C}_{1}\right)$	$r_{\text {SO }}, \mathrm{A}$	$r_{S_{1} S_{2}}, \mathrm{~A}$
$\mathrm{H}-\mathrm{S}-\mathrm{S}-\mathrm{H}$	18	...	\cdots	$99.0(91.3)^{23}$	\cdots	2.057 (2.055)
	3	$109.1(108.3)^{21}$	113.5 (111.3)	87.9 (93.1)	1.473 (1.457)	2.104 (2.108)
	2 (meso)	110.4	104.8	89.4	1.484	2.144
	$2(R, S)$...	103.3,106.4	90.3,88.4	1.486,1.483	2.144
	1		$110.5(110.9)^{2,6}$	$110.5(99.6)^{\text {b }}$	$1.447(1.448){ }^{\text {b }}$	$2.084(2.091)^{\text {b }}$
	17	$\begin{gathered} 110.2(111.5)^{22} \\ (118.0) \end{gathered}$	$\begin{array}{r} 106.5(105.5) \\ (105.9) \end{array}$	97.8 (101.5)	1.426 (1.428)	2.072 (2.193)

[^1]bromophenyl p-bromobenzenethiosulfonate (20). ${ }^{2}$
Table III shows a comparison of the calculated bond angles and bond lengths of $\mathbf{1 7}(\mathrm{R}=\mathrm{H})$ with the observed values of phenyl disulfone (21). ${ }^{26}$

A comparison of calculated and observed bond angles and bond lengths of hydrogen persulfide $(18, \mathrm{R}=\mathrm{H})^{27}$ and its corresponding oxide derivatives is shown in Table IV. The calculated equilibrium geometries in this study for $1,3,17$, and 18 agree well with the literature values. ${ }^{2,21-23}$ The only exception is the shorter $r_{\text {ss }}$ of $17(2.072 \AA)$ in comparison with $21(2.193 \AA)$. At least part of the difference ($0.121 \AA$) in the calculated S-S length of 21 can probably be attributed to substituent effects.

The small value for the S - S bond length in 17 does not appear to agree with Benson's "principle of alternating polarity" ${ }^{17}$ and suggests appreciable double bond character between the sulfur atoms (eq 9).

The S -S bond lengths decrease in the series $2>3>1>17$ >18 (Table IV), which correlates quite well with the ease of S-S bond homolysis of the corresponding known aryl analogues. ${ }^{8,13,28}$ It is known that aryl thiosulfinates undergo homolysis of the $\mathrm{S}-\mathrm{S}$ bond several orders of magnitude faster than the corresponding α-disulfones. ${ }^{28,29}$ Thus, the S-S bond lengths in 21 and in its corresponding thiosulfinate (22) do not parallel this ordering of $\mathrm{S}-\mathrm{S}$ bond homolysis.

The decrease in $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{H}_{1}$ bond angles in the series $2>3>17$ $>\mathbf{1 8}$ (Table I) also correlates fairly well with the ease of $\mathrm{S}-\mathrm{S}$ bond homolysis.

The contraction of the $S(0) S$ bond angle relative to tetrahedral has been interpreted in terms of increasing scharacter of the lone pair of electrons on sulfur and the strong, repulsive character of the partial SO double bond. ${ }^{25,30}$

Although the conformations of α, β, and γ disulfoxides would not necessarily be expected to be closely related, the calculated anti conformation of α-disulfoxide $\mathbf{2}$ is consistent with the preferred conformations of β and γ disulfoxides. ${ }^{32-34} \alpha$-Disulfoxide 2 has
(26) Kiers, C. Th.; Vos, A. Recl. Trav. Chim. Pays-Bas 1972, 91, 126.
(27) Snyder, J. P.; Carlsen, L. J. Am. Chem. Soc. 1977, 99, 2931.
(28) Koch, P.; Fava, A. J. Am. Chem. Soc. 1968, 90, 3868.
(29) Kice, J. L.; Farvstritsky, N. J. Org. Chem. 1970, 35, 114.
(30) Kice, J. L. Adv. Phys. Org. Chem. 1980, 17, 78.
(31) Louw, R.; Nieuwenhuyse, H. Chem. Commun. 1968, 1561.
(32) Pelizzi, G.; Michelon, G.; Bonivento, M. Cryst. Struct. Commun. 1976, 5, 617.

Table V. Total Energies of Some Organosulfur Derivatives

organosulfur compd	structure no.	total energy (au)	
		3-21G*	6-31G*
H-S-S-H	18	-792.4832	
	3	-866.8485	
	2	-941.2084	-945.7345
	2	-941.2084	-945.7344
	11	-941.2806	-945.7796
	1a	-941.3111	-945.8189
	17	-1090.0692	
	15	$\begin{aligned} & -545.0897 \\ & -541.43082^{15} \end{aligned}$	
	9	-470.6430	
H- $\dot{\text { S }}$	16	-396.2180	

an unusually long S-S bond, an expected characteristic of this unstable structure. However, comparison of the $\mathrm{S}-\mathrm{S}$ bond length of $2(2.144 \AA)$ with that of dithionite ion $\left({ }^{-} \mathrm{O}_{2} \mathrm{SSO}_{2}-, 2.39 \AA\right)^{34}$ shows that they are quite different and suggests 2 probably does not undergo $\mathrm{S}-\mathrm{S}$ bond homolysis as readily as dithionite ion. ${ }^{35}$

The decrease in SO bond distance in the series $2>3>17$ also correlates with the ease of $\mathrm{S}-\mathrm{S}$ bond homolysis. This could also suggest increasing d orbital participation by sulfur.

Calculated total energies of $1,2,3,9,11$, and $15-18$ at the $3-21 \mathrm{G}^{*}$ and $6-31 \mathrm{G}^{*}$ levels are given in Table V. Equations 10 and 11 summarize the energy differences among 1,2 , and 11.

The alternative reaction pathway (dimerization) for the sulfonyl (15) and thiyl (16) radicals shown in eq 7 and 8 is not observed experimentally. ${ }^{6,8,12,13,15,19}$ These calculations agree, suggesting that disproportionation of 1 to 17 and 18 (i.e., eq 12) is endo-

[^2]
$-19.1 \mathrm{kcal} \mathrm{mol}^{-1}\left(3-21 \mathrm{G}^{*}\right),-24.6 \mathrm{kcal} \mathrm{mol}^{-1}\left(6-31 \mathrm{G}^{*}\right)$
thermic by $43.8 \mathrm{kcal} \mathrm{mol}^{-1}$ at the $3-21 \mathrm{G}^{*}$ level.

The sulfonyl radical (15), which is generally represented by three principal resonance contributors (eq 13), has been found

to have hydrogen bonded to oxygen. ${ }^{17,36-38}$ Moreover, although both HOSO and ROSO are known, alkyl sulfonyl radicals generally possess a carbon-sulfur single-bonded structure $\mathrm{RSO}_{2}{ }^{36}$

Although sulfinyl radicals (9) are considered as stable, relatively

[^3]\[

$$
\begin{gather*}
2 \mathrm{HSO} \tag{14}\\
\mathbf{9} \\
-13.6 \mathrm{kcal} \mathrm{~mol}^{-1}\left(3-21 \mathrm{G}^{*}\right) \\
\mathrm{HSO}_{2}
\end{gather*}
$$
\]

delocalized, and unreactive π-type radicals, ${ }^{13,16}$ the disproportionation of 9 to $\mathbf{1 5}$ and $\mathbf{1 6}$ appears to be thermodynamically favorable.

Conclusions

1. Although other reasonable mechanisms are possible, these theoretical calculations support the mechanism proposed for the rearrangement of α-disulfoxides (2) via sulfinyl radicals to thiosulfinates (eq 3-6). These calculations also suggest that α-disulfoxides (2) are sufficiently stable to be observed and/or isolated at low temperatures. ${ }^{3.4}$
2. The variation of the $S-S$ bond lengths in $1-3,15$, and 16 agrees with the observed order of $\mathrm{S}-\mathrm{S}$ bond homolysis for $1 \mathbf{1 - 3}$, 15 , and 16.
Recent low-temperature ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR studies show that the m-chloroperoxybenzoic acid oxidation of 2 -methyl-2propyl 2-methyl-2-propanethiosulfinate (23) ${ }^{3}$ and 2,2-dimethylpropyl 2,2-dimethylpropanethiosulfinate (24) ${ }^{4}$ involves the corresponding α-disulfoxides ($\mathbf{2 5}$ and $\mathbf{2 6}$) as intermediates. These resports represent the first direct observation of α-disulfoxide (2) intermediates.

Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Registry No. 1, 80375-33-3; 1a, 15060-43-2; 2, 80375-34-4; 3, 80375-36-6; 9, 62470-71-7; 11, 80375-38-8; 15, 64255-60-3; 16, 13940-$21-1 ; 17,80375-39-9 ; 18,13465-07-1 ; 19,6481-73-8 ; 20,3347-03-3 ; 21$, 10409-06-0.

Al Atom-Ethylene and A1 Atom-Acetylene Complexes: Matrix Isolation Electron Spin Resonance Study

Paul H. Kasai
Contribution from IBM Instruments, Inc., Danbury, Connecticut 06810. Received August 31, 1981

Abstract

Al atom-ethylene and Al atom-acetylene complexes generated and/or trapped in rare-gas matrices at $\sim 4 \mathrm{~K}$ were examined by ESR spectroscopy. The Al-monoethylene complex has a π-coordinated structure with a dative bond of donation from a semifilled porbital of Al into the antibonding π orbital of ethylene. The Al atom and acetylene, in contrast, interact to form a σ-bonded adduct of vinyl structure. Photoirradiation of matrices containing Al-monoethylene complexes causes spectral changes suggesting the formation of Al-bis(ethylene) complexes. Photoirradiation of matrices containing the Al-acetylene adduct causes the cis-trans isomerization of the vinyl form.

Reactions between vaporized metal atoms and organic or inorganic molecules co-condensed at cryogenic temperature have been the subject of many recent investigations. ${ }^{1}$ Skells and Wolf ${ }^{2}$ demonstrated the formation of organoaluminum compounds when the aluminum atoms were co-condensed with excess propene or propyne at liquid-nitrogen temperature. Based upon the product a nalysis of the hydrolysis (by deuterium oxide) of the resultant

[^4]organoaluminum compounds they concluded that the primary reaction between free aluminum atoms and alkene or alkyne molecules is an addition of one aluminum atom to the unsaturated bond. The structural feature of the primary product was not elaborated.
Recently we communicated to this journal the generation and detection by electron spin resonance (ESR) spectroscopy of Al atom-ethylene and Al atom-acetylene complexes in rare gas matrices. ${ }^{3.4}$ The spectral analyses revealed that the Al atom-

[^5]
[^0]: (1) Block, S. S.; Weidner, J. P. Appl. Spectrosc. 1966, 20, 73 and references therein.
 (2) Noordik, J. H.; Vos, A. Recl. Trav. Chim. Pays-Bas 1967, 86, 156.
 (3) Freeman, F.; Angeletakis, C. N. J. Am. Chem. Soc. 1981, 103, 6232.
 (4) Freeman. F.; Angeletakis, C. N. J. Am. Chem. Soc., in press.
 (5) Freeman, F.; Angeletakis, C. N.; Maricich, T. J. Tetrahedron Lett. 1981, 22, 1867.
 (6) Freeman, F.; Angeletakis, C. N. J. Org. Chem. 1981, 45, 3991.
 (7) Marangeli, V.; Modena, G.; Todesco, P. E. Gazz. Chim. Ital. 1960, 90 , 681; Chem. Abstr. 1961, 55, 16510.
 (8) Chau, M. M.; Kice, J. L. J. Am. Chem. Soc. 1976, 98, 7711.
 (9) Oae, S.; Kim, Y. H.; Takata, T.; Fukushima, D. Tetrahedron Lett. 1977, 1195.
 (10) Oae, S., personal communication.

[^1]: ${ }^{a}$ Values from this work, literature values in parentheses. ${ }^{b}$ The monodentate oxygen atom in 1 used for comparison.

[^2]: (33) Pelizzi G.; Cogi, L.; Michelon, G.; Bonivento, M. Cryst. Struct. Commun. 1976, 5, 621.
 (34) Pryor, W. A. "Mechanisms of Sulfur Reactions"; McGraw-Hill: New York, 1962; pp 16-27.
 (35) Lynn, S.; Rinker, R. G.; Corcoran, W. H. J. Phys. Chem. 1964, 68, 2363.

[^3]: (36) Boyd, R. J.; Gupta, A.; Langler, R. F.; Lownie, S. P.; Pencock, J. A. Can. J. Chem. 1980, 58, 331.
 (37) Gilbert, B. C.; Kirk, C. M.; Norman, R. O. C. J. Chem. Res. Synop. 1977, 173; J. Chem. Res. Miniprint 1977, 1974.
 (38) McMillan, M.; Waters, W. A. J. Chem. Soc. B 1966, 422.

[^4]: (1) See, for example, a collection of review articles: Angew. Chem., Int. Ed. Engl., 14, 273 (1975).
 (2) P. S. Skell and L. R. Wolf, J. Am. Chem. Soc., 94, 7919 (1972).

[^5]: (3) P. H. Kasai and D. McLeod, Jr., J. Am. Chem. Soc., 97, 5609 (1975).

